PRMA Insights:
Market Access Success for Companion Diagnostic–Drug Pairings in Oncology

This PRMA Insights provides in-depth understanding of the evolving market access environment for therapeutic–diagnostic combinations, and the challenges and opportunities that it presents. Critical analysis developed by industry-experienced experts with comprehensive cross-functional knowledge is supported by actionable strategic insights, providing a cornerstone on which to build an innovative and integrated market access strategy.

www.prmainsights.com
Companion diagnostic–drug pairings require a more innovative approach to market access than for a targeted therapeutic alone. This requires in-depth understanding of the unique challenges and obstacles faced from both regulatory and reimbursement perspectives. Such challenges include different and often disconnected reimbursement pathways for the test and drug, appropriate clinical trial design, and payors’ and clinicians’ attitudes to the value of such tests. It is imperative that the requirement for a test does not become a barrier to use of the drug – through lack of or delayed reimbursement, access to the test, or at the prescribing level.

With critical analysis of the current and evolving market access environment, supported by actionable strategic insights, this is a key resource that provides a solid basis for planning the market access strategy for your therapeutic–diagnostic combination.

Whilst focusing on oncology, where the importance of companion diagnostic testing is growing rapidly, this strategic resource is also applicable to addressing challenges in other therapeutic arenas.

“This is the most insightful assessment of market access issues for companion diagnostics that I have seen”

Diagnostic manufacturer comment to their biotech partner
Introduction

The pairing of a targeted drug with a companion diagnostic test may be considered favorably by payors looking to limit access to subpopulations of patients in whom the drug is most cost-effective or where unmet need is greatest. However, the requirement for the test introduces a host of challenges in terms of market access. Both the drug and diagnostic manufacturers must fully understand the issues in order to develop an integrated market access strategy.

Both partners must be fully cognizant of the data requirements to support reimbursement of the test as well as the therapeutic — where these overlap and where they differ. This in turn informs the clinical trial strategy, data analysis, and health economics strategy, and any additional studies that may be needed to generate data to support the value proposition of the pairing. Clearly, this requires a highly coordinated approach.

The issue of who pays for the test is not resolved in many jurisdictions. Both partners need to understand the mechanisms for reimbursement of the test in different markets, and how this relates to reimbursement of the drug — if indeed it does. It is also imperative that both parties understand the potential post-marketing challenges, to ensure that the requirement for a test does not become a hurdle to prescription of the drug.
About this resource

PRMA Insights: Market Access Success for Companion Diagnostic–Drug Pairings in Oncology is an invaluable resource for manufacturers faced with developing an innovative and integrated market access strategy. The framework set out below is used to analyze the current dynamics of the oncology market for targeted products with companion diagnostics and how this is evolving, with actionable strategic insights to inform the clinical development pathway and market access strategy.

Development and validation of companion diagnostic tests

Chapters 1–3 provide essential background relating to biomarkers as the basis for companion diagnostic tests, development and validation of the test, and regulatory issues.

Key issues in developing the market access strategy for drug–test pairings

Chapter 4 provides a bridge between the technical aspects of the first three chapters and the more specific and detailed discussion of the processes in individual countries and how targeted drug–test pairings have been evaluated. This chapter discusses the key issues that manufacturers face and themes that resonate with multiple stakeholders on three broad themes: clinical development and regulatory considerations, HTA and reimbursement, and post-marketing considerations.

Evaluation and reimbursement of tests and pairings in the major markets

Chapters 5–11 explain the reimbursement pathways for tests and therapeutics in each of the scope countries (Australia, US, EU major 5), and the evidentiary requirements. These chapters also draw together the key issues from the HTAs of the scope products in each jurisdiction and other factors that influence reimbursement and delivery of diagnostic tests. Each chapter includes actionable strategic insights that can be incorporated into development of the market access strategy.

Case studies

The case studies in Chapters 12–15 provide a detailed analysis of the development of the drug and test, and their evaluation by HTA and P&R agencies. Each chapter includes key learnings that will help manufacturers to anticipate and plan for issues that arise during clinical development and in considering the market access strategy.

Key learnings

Issues that are critical to consider in developing the market access strategy are highlighted in Chapter 2 and the case studies and are summarized in the Chapter summaries and Executive summary.

PRMA Strategic Insights

Developed by our in-house experts, PRMA Strategic Insights provide critical advice to manufacturers in planning their market access strategy in the key markets. These are listed in the Chapter summary and Executive summary, as well as being presented in context at relevant places in the text.
Case studies

- **EGFR and ALK testing in NSCLC**
 (Chapter 12)
The role of EGFR as a biomarker, and the importance of EGFR mutation status (rather than EGFR expression level or gene copy number) as a predictor of response to Iressa and Tarceva, emerged after regulatory approval. This chapter illustrates the “catch-up” approach required in terms of further trials and subsequent label changes. This contrasts with the coordinated – and rapid – development of Xalkori and ALK testing, which supported simultaneous approval of the drug and test.

- **BRAF mutation testing in melanoma**
 (Chapter 14)
The therapeutic (Zelboraf) and the diagnostic (BRAF V600 mutation test) were co-developed; this chapter illustrates how incorporation of the test into pivotal trials can support rapid regulatory approval – of both the test and the drug. The FDA label for Zelboraf includes the requirement for use of an FDA-approved test, essentially meaning the Roche cobas test, as this is the only approved test. This chapter also illustrates how the HTA of a co-developed drug contrasts with the evaluation of drugs when the test has been developed separately.

- **KRAS mutation testing in colorectal cancer**
 (Chapter 13)
KRAS mutation status emerged as a stronger predictor of response than EGFR expression status during trials of Erbitux and Vectibix. This was possible through retrospective analysis of tumor samples, but also required post hoc analysis and thus presented a greater challenge in terms of regulatory and payor scrutiny. This chapter illustrates some of the difficulties of this “retrospective” approach – and what can be learnt in terms of being prepared for a similar scenario emerging during trials.

- **HER2 testing in gastric cancer**
 (Chapter 15)
This chapter illustrates a fourth scenario in which an established drug and companion diagnostic test are developed for a new indication; in this case HER2 testing, originally developed to inform use of Herceptin in breast cancer, was developed to inform use of Herceptin in gastric cancer. This required modification and validation of the established test for a different tumor type with different characteristics, which presents some similar and some different challenges from the scenarios above.

Example issues

This resource had been written by a core team of in-house experts with in-depth knowledge and hands-on experience of the market access and pricing and reimbursement of oncology products across the scope countries. This is supported by input from payors, health economists, pathologists, and international and national opinion leaders, giving a truly cross-functional perspective.

- What is the reimbursement pathway for the diagnostic?
- What are realistic price expectations for the test within the current reimbursement frameworks?
- How will the test be considered by HTA agencies, if at all? When is this connected or disconnected from HTA of the drug?
- How do the evidence requirements for the drug and test differ between countries?
- How will use of the therapeutic be affected if the diagnostic test is not reimbursed, or reimbursement is delayed?

- Will inclusion of a companion diagnostic in the product label be perceived as an additional barrier to prescription of the therapeutic, leading clinicians towards other products? How can this be addressed proactively?
- How should the cost of testing be incorporated into cost-effectiveness and budget impact models?
- Can the manufacturer of the therapeutic circumvent potential problems by paying for the test themselves? Has this precedent already been set in some markets?
- How can manufacturers “protect” the commercial test from being replaced by “home brew” tests that may perform inadequately? How do other commercial tests perform in selecting eligible patients?
- What are the trade-offs between a better chance of market access in a small targeted population versus slower or more limited approval but in a larger population?
- How should the companion diagnostic be incorporated into risk-sharing schemes?
7 UK
7.1 Key stakeholders
7.2 Regulation of companion diagnostic tests
7.3 Evaluation of diagnostic tests by NICE
7.3.1 Evaluation of companion diagnostic tests within the TA process
7.3.2 The NICE Diagnostic Assessment Programme
7.3.3 Pricing and funding
7.3.4 Accreditation
7.4 Pricing and reimbursement of therapeutics
7.4.1 Free pricing in the UK within the context of the PPRS
7.4.2 Value-based pricing from 2014
7.4.3 Evaluation for reimbursement by NICE
7.4.4 Patient access schemes
7.4.5 End-of-life treatments
7.4.6 Scientific advice scheme
7.4.7 NICE clinical guidelines
7.5 The SMC
7.5.1 The SMC has a disproportionate influence
7.5.2 Patient access schemes
7.6 Cancer care in the UK
7.6.1 Cancer networks
7.6.2 Cancer Drugs Fund
7.7 The Stratified Medicine Innovation Platform
7.7.1 Cancer Research UK Stratified Medicine Programme
7.8 NICE assessments of companion diagnostics within TAs
7.8.1 EGFR mutation testing and Iressa
7.8.2 Erbitux and KRAS mutation testing
7.8.3 Braf mutation testing and Zelboraf
7.8.4 HER2 testing and Herceptin in gastric cancer
7.9 SMC assessments of products with companion diagnostics

8 France
8.1 Key stakeholders
8.2 Pricing and reimbursement of diagnostic tests
8.2.1 NABM and CCAM
8.3 Pricing and reimbursement of therapeutics
8.3.1 Actual medical benefit – the SMR
8.3.2 Public health interest
8.3.3 Incremental benefit – ASMR
8.3.4 Introduction of the ITR
8.3.5 Economic evaluation by CEESP
8.3.6 Target population
8.4 Tarification à l’activité (T2A)
8.5 Oncology in France
8.5.1 The Cancer Plan
8.5.2 INCa
8.5.3 Regional molecular genetic centers
8.6 TC considerations of companion diagnostics in the evaluation of therapeutics

9 Germany
9.1 Key stakeholders
9.2 Overview of reimbursement and cost coverage
9.2.1 Reimbursement via DRGs for hospital care
9.2.2 Reimbursement for office-based care
9.3 Pricing and reimbursement of diagnostics
9.3.1 Reimbursement via the DRG
9.3.2 Reimbursement via the EBM
9.3.3 Private insurance
9.3.4 Pricing of tests
9.4 Delivery of companion diagnostic testing
9.4.1 Infrastructure
9.4.2 Quality assurance
9.5 Delivery of cancer care
9.5.1 Specialist centers
9.5.2 Treatment guidelines and directives
9.6 Benefit assessment of therapeutics
9.6.1 Determination of the appropriate comparator
9.6.2 Subpopulations
9.6.3 Specific requirements for oncology drugs
9.6.4 G-BA scientific advice scheme
9.7 Pricing of therapeutics
9.7.1 Cost data
9.7.2 Individual contracting with SHI funds
9.8 Benefit assessments
9.8.1 Zelboraf
9.8.2 IQWiG assessment of Xalkori

10 Spain
10.1 Key stakeholders
10.1.1 The central government
10.1.2 The Regions
10.1.3 The hospitals
10.2 Pricing and reimbursement of diagnostic tests
10.3 Hospital activities and funding
10.4 Pricing and reimbursement of therapeutics
10.4.1 The pricing and reimbursement processes are combined
10.4.2 Fast-track process for innovative products
10.4.3 Reimbursement
10.4.4 Hospital products are fully reimbursed but rationing controls exist
10.4.5 Pricing negotiations
10.5 Oncology initiatives and guidelines
10.5.1 The SNS cancer strategy
10.5.2 SEAP–SEOM consensus working group
10.5.3 Regional activities
10.5.4 Hospital evaluations

11 Italy
11.1 Key stakeholders
11.1.1 The central Government
11.1.2 The Regions
11.1.3 Local health units and hospitals
11.2 Companion diagnostic testing
11.2.1 Key stakeholders
11.2.2 Pricing and reimbursement
11.2.3 Delivery of testing
11.2.4 Manufacturer-sponsored testing networks
11.2.5 AIOM and SIAPEC guidelines
11.2.6 Quality assurance
11.2.7 AIFA activities to promote companion diagnostic testing
11.3 Pricing and reimbursement of therapeutics
11.3.1 The pricing and reimbursement processes are combined
11.3.2 Therapeutic innovation
11.3.3 Risk-sharing agreements
11.4 Regional HTA
11.5 Cancer care in Italy
11.6 Overview of HTAs of scope products
11.6.1 Iressa
11.6.2 Tarceva
11.6.3 Erbitux
11.6.4 Vectibix
11.6.5 Herceptin in gastric cancer

12 NSCLC
12.1 Overview
12.1.1 Lung cancer in never-smokers
12.2 Treatment
12.3 Molecular alterations in NSCLC
12.3.1 EGFR
12.3.2 KRAS
12.3.3 EML4–ALK
12.3.4 c-MET
12.3.5 c-MET inhibitors
12.3.6 ROS1
12.3.7 HSP90
12.3.8 ERCC1 and RRM1
12.3.9 BRAF
12.4 Case study: EGFR mutation testing and Iressa
12.4.1 Iressa
12.4.2 Approval for second-line in unselected patient populations
12.4.3 FDA label change restricting use of Iressa
12.4.4 EGFR mutation as the biomarker
12.4.5 EMA approval for patients with activating mutations of EGFR TK
12.4.6 Pivotal trials
12.4.7 Summary
12.5 Case study: EGFR mutation testing and Tarceva
12.5.1 Approval in an unselected patient population
12.5.2 Approval for use in EGFR mutation-positive NSCLC
12.5.3 Regulatory approval of EGFR mutation testing
12.5.4 Feasibility of large-scale screening of patients with NSCLC for EGFR mutations
12.5.5 Cost savings associated with EGFR mutation testing
12.6 HTAs of EGFR TKIs
12.6.1 Australia
12.6.2 NICE assessments of Iressa
12.6.3 NICE assessments of Tarceva
12.6.4 SMC assessment of Iressa
12.6.5 SMC assessment of Tarceva
12.6.6 France
12.6.7 Germany
12.6.8 Italy
12.6.9 Spain
12.6.10 US
12.7 Evaluations of EGFR mutation testing
12.7.1 Australia (MSAC)
12.7.2 NICE assessment of EGFR mutation testing in NSCLC
12.8 Guidelines for EGFR testing in NSCLC
12.8.1 ESMO
12.8.2 NCCN
12.8.3 ASCO
12.8.4 CAP, IASLC, and AMP
12.9 Adoption of EGFR mutation testing
12.9.1 Italy
12.10 Case study: ALK testing and Xalkori
12.10.1 The Vysis ALK Break Apart FISH Probe Kit
12.10.2 Phase 1 and 2 studies of Xalkori
12.10.3 Development of the Vysis ALK test
12.10.4 PROFILE 1005 (Phase 2)
12.10.5 PROFILE 1007 (Phase 3)
12.10.6 FDA approval
12.10.7 European approval
12.10.8 Phase 3 post-marketing studies: PRIME 1014
12.10.9 Testing methods
12.10.10 HTAs of Xalkori
12.11 MSAC evaluation of EML4–ALK mutation testing
12.11.1 Other ALK inhibitors in development
12.12 Guidelines for ALK testing in NSCLC
12.12.1 ESMO
12.12.2 NCCN
12.12.3 CAP
13 Colorectal cancer
13.1 Overview of CRC
13.1.1 Treatment
13.2 Molecular alterations in CRC
13.2.1 EGFR
13.2.2 KRAS
13.2.3 BRAF
13.2.4 NRAS
13.2.5 PI3K and PTEN
13.2.6 Mismatch repair genes
13.3 Case study: KRAS mutations in CRC
13.3.1 Erbitux
13.3.2 Vectibix
13.3.3 KRAS mutation testing
13.3.4 Resistance to Erbitux and Vectibix
13.4 HTAs
13.4.1 Australia
13.4.2 US
13.4.3 NICE
13.4.4 SMC
13.4.5 France
13.4.6 Germany
13.4.7 Italy
13.4.8 Spain
13.5 Quality assurance
13.6 Targeted drugs with predictive biomarkers in development
13.6.1 MET pathway
13.6.2 PI3K–AKT pathway
14 Melanoma
14.1 Overview of melanoma
14.1.1 Treatment
14.2 Molecular alterations in melanoma
14.2.1 BRAF
14.2.2 MEK inhibitors
14.2.3 BRAF and MEK inhibitors in development
14.2.4 NRAS
14.2.5 KIT
14.2.6 GNAQ and GNA11
14.2.7 PTEN
14.3 Case study: Zelboraf and BRAF mutation testing in melanoma
14.3.1 Co-development of Zelboraf and the cobas 4800 BRAF Mutation Test
14.3.2 Co-development of Zelboraf and the cobas 4800 BRAF Mutation Test
14.3.3 Approval pathway
14.3.4 Development timeline
14.4 Incorporation of testing in treatment guidelines
14.4.1 NCCN guidelines
14.4.2 ESMO guidelines
14.5 Adoption of BRAF testing
14.6 HTAs of Zelboraf and the cobas test
14.6.1 Australia
14.6.2 US
14.6.3 NICE
14.6.4 SMC
14.6.5 France
14.6.6 Germany
15 Gastric cancer
15.1 Overview of gastric cancer
15.2 Treatment
15.3 Molecular pathways as therapeutic targets
15.3.1 HER2
15.3.2 EGFR
15.3.3 Dual EGFR/HER2 inhibition
15.3.4 Phase 2 and 3 trials enriched for HER2 or EGFR status
15.3.5 c-MET
15.3.6 FGFR
15.3.7 Claudiximab
15.4 Case study; HER2 and Herceptin in gastric cancer
15.4.1 Herceptin
15.4.2 Assessment of HER2
15.4.3 Commercial tests
15.4.4 Validation of HER2 testing for gastric cancer
15.4.5 The ToGA trial
15.4.6 Subgroup analysis
15.5 Regulatory approval of Herceptin and HER2 testing in gastric cancer
15.5.1 HER2
15.5.2 HER2
15.5.3 HER2
15.5.4 HER2
15.5.5 HER2
15.5.6 HER2
15.5.7 HER2
15.5.8 HER2
15.5.9 HER2
15.5.10 HER2
15.6 HTAs of Herceptin and HER2 testing in gastric cancer
15.6.1 Australia
15.6.2 US
15.6.3 NICE
15.6.4 SMC
15.6.5 France
15.6.6 Spain
15.6.7 Italy
15.6.8 Germany
15.7 Guidelines on HER2 testing in gastric cancer
15.7.1 Australia
15.7.2 CAP protocols
15.7.3 NCCN
15.7.4 ESMO
15.7.5 UK
15.7.6 Germany
15.7.7 France
15.7.8 Italy
15.7.9 Spain
15.7.10 SEAP quality assurance program
References
Author profiles

This resource has been written a core team of in-house experts with in-depth knowledge and hands-on experience of the market access and the P&R of oncology products across the scope countries. This is supported by extensive secondary and primary research, and input from payors, health economists, pathologists, and international and national opinion leaders.

Dr Clare Jones
Clare has more than 10 years’ experience in R&D and marketing of biotechnology and medical devices, particularly diagnostics and personalized medicine, and leads applied research on market access for products with companion diagnostics. Clare has worked in a number of therapy areas including oncology, respiratory disease, and allergy. Clare holds a PhD in Molecular Biology from the University of Warwick, an MBA from the University of Oxford, and a Diploma in Health Economics from the University of York.

David Sykes
David is founding partner of PRMA Consulting. David has more than 15 years’ experience in P&R, market access, and health outcomes and has held senior leadership roles at Lilly and Johnson & Johnson. He has developed European and global P&R and market access programs to quantify, capture, and communicate product value, including several launches across multiple therapy areas. David provides leadership and strategic input around the complex issues that manufacturers face in bringing high-value innovative products to market across a broad range of therapy areas, particularly oncology and autoimmune disease.

Dr Helen Barham
Helen has led the content development of multiple PRMA Insights titles, working closely with authors and contributors. She has broad knowledge of market access and P&R, combined with expertise in a wide range of therapeutic areas and over 15 years’ experience in medical publishing. Helen has a PhD in Pharmacology from the University of Sheffield, which included work on pharmacogenetics, and conducted postdoctoral research in oncology at the former MRC Radiobiology Unit near Oxford.

Michael Aristides
Michael is based in Australia and has more than 20 years’ experience in HEOR. He specializes in demonstrating the value of health technologies and in the assessment of cost-effectiveness, planning research activities and data collection, and designing and reviewing models and submission dossiers. He has served as deputy director of the Pharmaceutical Evaluation Section in the Australian Federal Health Department, and was part of a multidisciplinary team responsible for implementing the Australian Pharmacoeconomic Guidelines.
Monika Behrens
Monika has more than 15 years’ experience in the pharmaceutical industry and statutory health insurance in Germany and was formerly responsible for market access strategy at GlaxoSmithKline in Germany, the UK, and Europe for a broad range of disease areas, including oncology, neurology, urology, and vaccines. Monika has in-depth knowledge of the German healthcare system, the benefit assessment system, and the AMNOG legislation. She holds an MSc in Health Economics from the University of York.

Dr Agustin Bellosi
Agustin has 6 years’ practical experience in laboratory-based molecular biology, using a broad range of techniques and methodologies. At PRMA Consulting he has conducted primary and secondary research for a range of oncology and asthma projects, including systematic and non-systematic literature reviews, HTA analysis, explanations of mechanism of action, and development of strategies to collect observational data from patient databases and registries. Agustin has a PhD from the University of Cambridge.

Dr Agnes Brouard
Agnes is a hospital pharmacist with over 25 years’ experience in the French healthcare system. She has assessed drugs and medical devices for hospital formulary inclusion and has been involved in drug purchasing and the development of therapeutic practice guidelines based on evidence-based medicine methodology. She has also performed detailed analyses of ANSM and HTA reports and CEPS drug pricing regulations.

Dr Alicia Gil
Alicia has more than 15 years’ experience in the pharmaceutical and biotechnology industry. She has held global, regional, and local positions in which she was involved in the development and execution of regulatory affairs and market access strategies through all phases of drug development and commercialization, across a range of therapeutic areas. Alicia has an in-depth understanding of the Spanish healthcare system and market access challenges that it presents.

Dr Franz Hessel
Franz is Professor for Healthcare Management and head of the Executive MBA program at the SRH University, Berlin. He has also held senior positions in HEOR at Abbott Diagnostics and Sanofi-Aventis, Germany, and has been a lecturer and research fellow at the University of Greifswald and the University of Essen, Institute for Health Care Management, where he conducted and published a large number of economic evaluation studies, HTAs, and outcomes research studies.

Jonathan Higginson
Jonathan has 9 years’ experience in management consulting and the pharma and biotech industries. His focus has been on strategic planning for P&R and market access, brand development, and product lifecycle management. He has worked globally across multiple therapeutic areas, with a particular focus on specialty and biologic products, supported by his research background in molecular biology. As a member of the US team, Jonathan provides a breadth of expertise in pricing and market access in the US. Jonathan has a BA in Business Economics from the University of California, Santa Barbara.

Vanessa Mirsky
Vanessa has more than 10 years’ consultancy experience in commercialization strategy in healthcare and the life sciences. She has a strong background in managed markets, including reimbursement dynamics among public and private payors in the US, and significant experience in oncology, autoimmune disease, and biologics. Vanessa holds an MA in Epidemiology and Health Studies from the University of Chicago.

Professor Deborah Saltman AM
Deborah is Medical Director at PRMA Consulting and provides strategic insight across consultancy work and PRMA Insights. Deborah has worked in clinical medicine and with top-20 pharmaceutical companies for over 15 years and has extensive experience in health research and medical publishing; her doctorate is in health outcomes. Deborah is a Visiting Professor in the Department of Primary Care and Public Health within the School of Public Health at Imperial College London and at the University of Technology, Sydney; she is also an Honorary Professor at the University of Sydney.

Dr Kristin Schmiedehausen
Kristin is a physician with more than 15 years’ practical clinical and commercial experience, focusing on diagnostics and oncology. She is Chief Medical Officer of Radius Health and also works independently as a medical strategy consultant.
The development of a drug with a companion diagnostic is more complex than that for a targeted drug alone, and a multitude of issues need to be considered across stages of development, from clinical and regulatory, through KIB and reimbursement, to post-commercialization. Manufacturers used to developing value propositions for targeted drugs face several additional complexities around the development, validation, regulatory, and reimbursement of the test. Regulators and health technology agencies are beginning to develop their thinking and methodologies to support the development of these co-dependent technologies; manufacturers need to mobilize the actions and decisions of the agencies to understand how they are evolving. Achieving reimbursement of the therapeutic but not the test could have commercially disastrous consequences. We believe that achieving coordinated reimbursement of the two elements represents a new market access model that manufacturers need to address proactively if physicians and patients are to gain access to their products.

The first three chapters have discussed the process of identifying biomarkers and development of the companion diagnostic test, the structure of clinical trials, and the regulatory requirements for the test. This chapter draws together the key challenges that manufacturers need to consider in the development of drug-diagnostic pairings. It is written from the market access perspective but includes issues at various points of the development and marketing process, based on the framework set out in Figure 4.6. None of the issues can be considered in isolation and the issues considered under clinical development will necessarily be impacted by success of reimbursement and market access. Thus, the aim of this chapter is to provide a comprehensive picture across the development life cycle and to identify critical decision points between the various relevant stakeholders.

4.1 Case studies for development of companion diagnostic tests

In an “ideal” companion diagnostic, the biomarker is identified early in clinical development, and the test is developed in parallel with the drug and validated alongside it. The recent examples of Erbitux and Herceptin are illustrative. Erbitux is an antibody that targets the epidermal growth factor receptor (EGFR), and was approved for the treatment of colorectal cancer for patients with specific somatic alterations in the KRAS gene.

Adaptive clinical trial design is increasingly recognized as a valid method for improving the efficiency of studies (e.g., shorter duration, fewer patients) and is more likely to demonstrate any effect of the drug in a more efficient and cost-effective manner, for patients who have either identified or unselected (or uncharacterized) subgroups. The DNA reflection paper on pharmacogenomic biomarkers in clinical development and patient selection acknowledges that adaptive design may be applicable to trials of drugs with potential companion diagnostic (WMA, 2010). The FDA (2010) issued a draft guidance on adaptive designs in February 2010, to provide guidance to manufacturers in planning and conducting studies, and to ensure efficient FDA review (FDA, 2010). This document gives advice on aspects of adaptive design for clinical, statistical, regulatory, and pharmaceutical reasons, and is intended to: (1) assist researchers in the design and development of adaptive clinical trials to improve efficiency in clinical research; (2) provide general advice on adaptive design; and (3) discuss the regulatory considerations of adaptive trials. The goal of the FDA is to achieve an efficient procedure for obtaining and reviewing data in the context of drug development.

PRMA Insights: Market Access Success for Companion Diagnostic–Drug Pairings in Oncology
UK | 9

PRMA Strategic Insights: UK

The first three chapters have discussed the process of identifying biomarkers and development of the companion diagnostic test, the structure of clinical trials, and the regulatory requirements for the test. This chapter draws together the key challenges that manufacturers need to consider in the development of drug-diagnostic pairings. It is written from the market access perspective but includes issues at various points of the development and marketing process, based on the framework set out in Figure 4.6. None of the issues can be considered in isolation and the issues considered under clinical development will necessarily be impacted by success of reimbursement and market access. Thus, the aim of this chapter is to provide a comprehensive picture across the development life cycle and to identify critical decision points between the various relevant stakeholders.

4.1 Case studies for development of companion diagnostic tests

In an “ideal” companion diagnostic, the biomarker is identified early in clinical development, and the test is developed in parallel with the drug and validated alongside it. The recent examples of Erbitux and Herceptin are illustrative. Erbitux is an antibody that targets the epidermal growth factor receptor (EGFR), and was approved for the treatment of colorectal cancer for patients with specific somatic alterations in the KRAS gene.

Adaptive clinical trial design is increasingly recognized as a valid method for improving the efficiency of studies (e.g., shorter duration, fewer patients) and is more likely to demonstrate any effect of the drug in a more efficient and cost-effective manner, for patients who have either identified or unselected (or uncharacterized) subgroups. The DNA reflection paper on pharmacogenomic biomarkers in clinical development and patient selection acknowledges that adaptive design may be applicable to trials of drugs with potential companion diagnostic (WMA, 2010). The FDA (2010) issued a draft guidance on adaptive designs in February 2010, to provide guidance to manufacturers in planning and conducting studies, and to ensure efficient FDA review (FDA, 2010). This document gives advice on aspects of adaptive design for clinical, statistical, regulatory, and pharmaceutical reasons, and is intended to: (1) assist researchers in the design and development of adaptive clinical trials to improve efficiency in clinical research; (2) provide general advice on adaptive design; and (3) discuss the regulatory considerations of adaptive trials. The goal of the FDA is to achieve an efficient procedure for obtaining and reviewing data in the context of drug development.

PRMA Insights: Market Access Success for Companion Diagnostic–Drug Pairings in Oncology
UK | 9

PRMA Strategic Insights: UK

The first three chapters have discussed the process of identifying biomarkers and development of the companion diagnostic test, the structure of clinical trials, and the regulatory requirements for the test. This chapter draws together the key challenges that manufacturers need to consider in the development of drug-diagnostic pairings. It is written from the market access perspective but includes issues at various points of the development and marketing process, based on the framework set out in Figure 4.6. None of the issues can be considered in isolation and the issues considered under clinical development will necessarily be impacted by success of reimbursement and market access. Thus, the aim of this chapter is to provide a comprehensive picture across the development life cycle and to identify critical decision points between the various relevant stakeholders.

4.1 Case studies for development of companion diagnostic tests

In an “ideal” companion diagnostic, the biomarker is identified early in clinical development, and the test is developed in parallel with the drug and validated alongside it. The recent examples of Erbitux and Herceptin are illustrative. Erbitux is an antibody that targets the epidermal growth factor receptor (EGFR), and was approved for the treatment of colorectal cancer for patients with specific somatic alterations in the KRAS gene.

Adaptive clinical trial design is increasingly recognized as a valid method for improving the efficiency of studies (e.g., shorter duration, fewer patients) and is more likely to demonstrate any effect of the drug in a more efficient and cost-effective manner, for patients who have either identified or unselected (or uncharacterized) subgroups. The DNA reflection paper on pharmacogenomic biomarkers in clinical development and patient selection acknowledges that adaptive design may be applicable to trials of drugs with potential companion diagnostic (WMA, 2010). The FDA (2010) issued a draft guidance on adaptive designs in February 2010, to provide guidance to manufacturers in planning and conducting studies, and to ensure efficient FDA review (FDA, 2010). This document gives advice on aspects of adaptive design for clinical, statistical, regulatory, and pharmaceutical reasons, and is intended to: (1) assist researchers in the design and development of adaptive clinical trials to improve efficiency in clinical research; (2) provide general advice on adaptive design; and (3) discuss the regulatory considerations of adaptive trials. The goal of the FDA is to achieve an efficient procedure for obtaining and reviewing data in the context of drug development.

PRMA Insights: Market Access Success for Companion Diagnostic–Drug Pairings in Oncology
UK | 9

PRMA Strategic Insights: UK

The first three chapters have discussed the process of identifying biomarkers and development of the companion diagnostic test, the structure of clinical trials, and the regulatory requirements for the test. This chapter draws together the key challenges that manufacturers need to consider in the development of drug-diagnostic pairings. It is written from the market access perspective but includes issues at various points of the development and marketing process, based on the framework set out in Figure 4.6. None of the issues can be considered in isolation and the issues considered under clinical development will necessarily be impacted by success of reimbursement and market access. Thus, the aim of this chapter is to provide a comprehensive picture across the development life cycle and to identify critical decision points between the various relevant stakeholders.

4.1 Case studies for development of companion diagnostic tests

In an “ideal” companion diagnostic, the biomarker is identified early in clinical development, and the test is developed in parallel with the drug and validated alongside it. The recent examples of Erbitux and Herceptin are illustrative. Erbitux is an antibody that targets the epidermal growth factor receptor (EGFR), and was approved for the treatment of colorectal cancer for patients with specific somatic alterations in the KRAS gene.

Adaptive clinical trial design is increasingly recognized as a valid method for improving the efficiency of studies (e.g., shorter duration, fewer patients) and is more likely to demonstrate any effect of the drug in a more efficient and cost-effective manner, for patients who have either identified or unselected (or uncharacterized) subgroups. The DNA reflection paper on pharmacogenomic biomarkers in clinical development and patient selection acknowledges that adaptive design may be applicable to trials of drugs with potential companion diagnostic (WMA, 2010). The FDA (2010) issued a draft guidance on adaptive designs in February 2010, to provide guidance to manufacturers in planning and conducting studies, and to ensure efficient FDA review (FDA, 2010). This document gives advice on aspects of adaptive design for clinical, statistical, regulatory, and pharmaceutical reasons, and is intended to: (1) assist researchers in the design and development of adaptive clinical trials to improve efficiency in clinical research; (2) provide general advice on adaptive design; and (3) discuss the regulatory considerations of adaptive trials. The goal of the FDA is to achieve an efficient procedure for obtaining and reviewing data in the context of drug development.

PRMA Insights: Market Access Success for Companion Diagnostic–Drug Pairings in Oncology
UK | 9

PRMA Strategic Insights: UK

The first three chapters have discussed the process of identifying biomarkers and development of the companion diagnostic test, the structure of clinical trials, and the regulatory requirements for the test. This chapter draws together the key challenges that manufacturers need to consider in the development of drug-diagnostic pairings. It is written from the market access perspective but includes issues at various points of the development and marketing process, based on the framework set out in Figure 4.6. None of the issues can be considered in isolation and the issues considered under clinical development will necessarily be impacted by success of reimbursement and market access. Thus, the aim of this chapter is to provide a comprehensive picture across the development life cycle and to identify critical decision points between the various relevant stakeholders.
12.2 Treatment

Radiation platinum-based chemotherapy for advanced disease provides response rates of 30–40%, but median survival of 8–11 months without compromising HRQoL (Villaruz and Socinski, 2011). However, the use of the lapatinib and trastuzumab combination in patients with high HER2 levels has improved outcomes for patients with breast cancer (Section 15.4.6.3). The addition of bevacizumab to the standard platinum-based chemotherapy regimen improved tumor response rates, time to progression, and survival (Jenkins et al., 2016; Nish et al., 2016; Sandler et al., 2006). In all trials, HER2 status was determined by IHC and/or FISH, using predefined cutoffs for clinical trial eligibility (Sections 15.4.6.3 and 15.6.3). The HER2 test was not revalidated by the IHC and/or FISH assays and not linked to the trial arm during the trial period (Wék et al., 2010). HER2 status was determined by IHC and/or FISH, using predefined cutoffs for clinical trial eligibility (Sections 15.4.6.3 and 15.6.3). The HER2 test was not revalidated by the IHC and/or FISH assays and not linked to the trial arm during the trial period (Wék et al., 2010). HER2 status was determined by IHC and/or FISH, using predefined cutoffs for clinical trial eligibility (Sections 15.4.6.3 and 15.6.3). The HER2 test was not revalidated by the IHC and/or FISH assays and not linked to the trial arm during the trial period (Wék et al., 2010).

12.3 Molecular alterations in NSCLC

It is estimated that more than half of NSCLC tumors have a known oncogenic driver (e.g., EGFR, BRAF, ALK, MET, ROS1, ALK, ROS1, etc.; et al., 2010). Figure 12.3 illustrates molecular alterations in NSCLC.

Key learnings: gastric cancer

The case of Herceptin illustrates a key trend in the development of companion diagnostic tests that a biomarker and test must be validated and approved in individual tumor types. Many of the key learnings are discussed more generally in Chapter 5.

- The FDA stated that, because of the differences between gastric and breast tumor tissues, tests had to be approved separately for use in each tumor type. Similar, CE-marking is also required for each tumor type (Section 15.5).
- The degree of heterogeneity of tumors is to be considered in the case of gastric cancer, heterogeneity is greater than in breast cancer. Thus, biopsies samples need to be taken from multiple sites within the tumor, to ensure that all eligible patients are identified (Sections 15.4.5 and 15.4.6).
- Measurement should be replaced in early trials, to determine whether gene amplification translates into protein overexpression, and thus which is the better biomarker or whether both tests are required (Sections 15.4.6.3 and 15.6.3). The markers are the most relevant for clinical use. The biomarkers of choice are the HER2 IHC assay (Section 15.5). The core of the companion diagnostic test is the HER2 assay, which should be performed on the tumor tissue. The HER2 assay should be performed on the tumor tissue. The HER2 assay should be performed on the tumor tissue. The HER2 assay should be performed on the tumor tissue. The HER2 assay should be performed on the tumor tissue. The HER2 assay should be performed on the tumor tissue.
How to use this resource

The diagram illustrates just a few ways in which this resource can support your planning.

<table>
<thead>
<tr>
<th>Understand how companion diagnostic tests are considered, used, and reimbursed</th>
<th>All chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inform the clinical development program (subgroups, comparators, test strategy)</td>
<td>Chapters 2–4, Country chapters (particularly Australia [Ch 5] and UK [Ch 7]); case studies</td>
</tr>
<tr>
<td>Develop a testing strategy for the clinical trial that will translate into the real-world setting</td>
<td>Chapter 2, Country chapters (particularly Australia [Ch 5] and UK [Ch 7]); case studies</td>
</tr>
<tr>
<td>Understand how to work with your diagnostic partner to develop a relevant and appropriate evidence base that meets payors' expectations</td>
<td>Chapters 4, 12 (Xalkori case study), 14 (Zelboraf case study)</td>
</tr>
<tr>
<td>Integrate the cost of testing into economic models</td>
<td>Chapters 4, 5–11 (particularly Chapters 5 [Australia] and 7 [UK])</td>
</tr>
<tr>
<td>Competitor approaches</td>
<td>Chapters 12–15</td>
</tr>
<tr>
<td>Develop and inform value propositions</td>
<td>Chapters 4–15</td>
</tr>
<tr>
<td>Internal education</td>
<td>All chapters</td>
</tr>
<tr>
<td>Cross-functional collaboration</td>
<td>All chapters</td>
</tr>
</tbody>
</table>

Understand:

- The need for an integrated market access strategy for the drug and test
- How diagnostic tests are evaluated in different jurisdictions
- How tests are reimbursed and the implication for pricing
- Driving factors behind adoption of branded versus “home brew” tests
- Practical barriers to use of tests (availability, clinicians’ prescribing behavior)

Understand:

- FDA and EMA expectations in terms of clinical trial design, subgroup analysis, and efficacy, safety, and post-marketing studies
- Reimbursement/HTA agencies’ evidentiary requirements to support the test or drug–test pairing, and how these differ between markets
- Key learnings from the strategies used for establishing pairings – what worked, what didn’t, and why
- Importance of subgroup analysis (both *a priori* and potentially *post hoc*) and how this is best conducted and powered to meet agencies’ expectations whilst retaining flexibility should the biomarker strategy change

Understand:

- Sample handling, storage, archiving, retrieval, and consent
- Key issues to consider when transferring an established test into a different tumor type
- How testing used in clinical trials transfers into clinical practice
- How different strategies were considered by payors in terms of:
 - number and type of test
 - sequencing of tests
 - parallel vs sequential testing

Understand:

- How evolving requirements are changing the market access paradigm
- The data requirements to support both the test and the drug
- Where the two development pathways are integrated and coordinated and where they are disconnected, and the implications for evidence generation
- How the test supports the drug in HTA
- The reimbursement framework for each element
- Realistic pricing expectations for the test

Understand:

- How test performance needs to be factored into cost-effectiveness analysis
- Which costs should be included in cost-effectiveness and budget impact models
- How requirements for cost-effectiveness analysis may differ when the drug and test have been developed separately or co-developed
- Requirements for market-relevant estimates of biomarker prevalence

Understand:

- The impact of the companion diagnostic on economic models
- HTA feedback on eligible populations
- Development and evolution of strategies for subgroup analysis and reimbursement positioning

Understand:

- Understand the value propositions for established drug–test pairings and their acceptance by payors
- Develop an integrated drug–test value proposition that proactively addresses the market access paradigm

Use as educational materials to enable colleagues to become familiar with the evidentiary requirements for the test and drug–test pairings and the market access challenges

Understand trade-offs and implications for market access when designing the clinical trial program for the drug–test pairing

- Ensure common understanding across the organization in order to develop a single integrated strategy that meets various stakeholders’ needs in terms of:
 - Market access challenges and opportunities
 - HEOR strategy development
 - Regulatory expectations: indication, trial design
 - A consistent value proposition that supports both market access and marketing
Pricing and ordering

• **PRMA Insights Focus**: Pricing and Reimbursement in Germany under AMNOG ($19,000)

• **Market Access Success** for Companion Diagnostic–Drug Pairings in Oncology ($79,000)

Pricing and Reimbursement Success in:

• NSCLC (2nd edition) ($69,000)

• Renal Cell Carcinoma ($59,000)

• Metastatic Breast Cancer ($59,000)

• Rheumatoid Arthritis ($69,000)

• Psoriasis ($59,000)

• Type 2 Diabetes ($59,000)

• COPD ($59,000)

Each PRMA Insights license provides:

• Unlimited access to the electronic version across the organization

• Two copies of the PRMA Insights pack

• A teleconference with authors from the PRMA Consulting team to:
 • Talk you through the content
 • Highlight key market access themes
 • Discuss strategic implications for your assets

To order, or for more information, call +44 (0)1252 624429 or email info@prmainights.com
I would like to order

PRMA Insights: Market Access Success for Companion Diagnostic–Drug Pairings in Oncology

$79,000 global user license* (unlimited use within entire organization)

*Reports will be digitally rights managed, restricting forwarding, printing, scanning, and saving to USB outside the organization, see PRMA Insights standard terms and conditions (www.prmainsights.com/termsandconditions); reports will not be dispatched before full payment has been received

Please invoice my company

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job title</td>
<td>Telephone</td>
</tr>
<tr>
<td>Department</td>
<td>Mobile</td>
</tr>
<tr>
<td>Company</td>
<td>Please quote PO number</td>
</tr>
<tr>
<td>Address</td>
<td>NB: EU companies (excl UK) must supply VAT/BTW/MOMS/MWST/IVA/FPA number:</td>
</tr>
<tr>
<td>Postcode/ZIP</td>
<td>UK sales are subject to VAT at the current rate</td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
</tbody>
</table>

Complete your details

Please tick if same as above

<table>
<thead>
<tr>
<th>Name</th>
<th>Postcode/ZIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job title</td>
<td>Country</td>
</tr>
<tr>
<td>Department</td>
<td>Email</td>
</tr>
<tr>
<td>Company</td>
<td>Telephone</td>
</tr>
<tr>
<td>Address</td>
<td>Mobile</td>
</tr>
</tbody>
</table>

Please sign and date to confirm your order

Send your order

Fax this order form to +44 (0)1252 279297 or scan and email to info@prmaconsulting.com

Invoice payment terms: 30 days
PRMA Consulting

PRMA Consulting are experts in pricing, reimbursement, and market access. We work in close partnership with our clients to deliver integrated and innovative solutions to market access.

- **Strategy development** – our creative but pragmatic market access strategies are founded on early planning and strategic thinking to understand the challenges.
- **Evidence generation** – the broad cross-functional expertise and thought leadership of our 75+ strong consultancy team enables us to deliver novel and scientifically rigorous payer-focused evidence generation solutions that meet the needs of both global and affiliate groups.
- **Value communication** – we develop innovative ways to communicate the value proposition of products to payors and other stakeholders.

For further details, visit www.prmaconsulting.com

Join our webinars

We regularly host webinars on issues that we consider to be of critical importance in market access, such as companion diagnostics, benefit assessment in Germany, and the increasingly important role of PROs in oncology.

Meet us face to face

Join us at one of the international conferences that we regularly attend and discuss your market access challenges face to face.

To learn more and to register for forthcoming webinars and events, visit www.prmaconsulting.com/events

Follow us

- Learn about forthcoming PRMA consulting events
- Keep up to date with pricing, reimbursement, and market access issues
- Watch our informative industry-related webinars and short videos